Cargando…

Intestine-selective reduction of Gcg expression reveals the importance of the distal gut for GLP-1 secretion

OBJECTIVE: Glucagon-like peptide-1 is a nutrient-sensitive hormone secreted from enteroendocrine L cells within the small and large bowel. Although GLP-1 levels rise rapidly in response to food ingestion, the greatest density of L cells is localized to the distal small bowel and colon. Here, we asse...

Descripción completa

Detalles Bibliográficos
Autores principales: Panaro, Brandon L., Yusta, Bernardo, Matthews, Dianne, Koehler, Jacqueline A., Song, Youngmi, Sandoval, Darleen A., Drucker, Daniel J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200938/
https://www.ncbi.nlm.nih.gov/pubmed/32278655
http://dx.doi.org/10.1016/j.molmet.2020.100990
Descripción
Sumario:OBJECTIVE: Glucagon-like peptide-1 is a nutrient-sensitive hormone secreted from enteroendocrine L cells within the small and large bowel. Although GLP-1 levels rise rapidly in response to food ingestion, the greatest density of L cells is localized to the distal small bowel and colon. Here, we assessed the importance of the distal gut in the acute L cell response to diverse secretagogues. METHODS: Circulating levels of glucose and plasma GLP-1 were measured in response to the administration of L cell secretagogues in wild-type mice and in mice with (1) genetic reduction of Gcg expression throughout the small bowel and large bowel (Gcg(Gut−/-)) and (2) selective reduction of Gcg expression in the distal gut (Gcg(DistalGut−/-)). RESULTS: The acute GLP-1 response to olive oil or arginine administration was markedly diminished in Gcg(Gut−/-) but preserved in Gcg(DistalGut−/-) mice. In contrast, the increase in plasma GLP-1 levels following the administration of the GPR119 agonist AR231453, or the melanocortin-4 receptor (MC4R) agonist LY2112688, was markedly diminished in the Gcg(DistalGut−/-) mice. The GLP-1 response to LPS was also markedly attenuated in the Gcg(Gut−/-) mice and remained submaximal in the Gcg(DistalGut−/-) mice. Doses of metformin sufficient to lower glucose and increase GLP-1 levels in the Gcg(Gut+/+) mice retained their glucoregulatory activity, yet they failed to increase GLP-1 levels in the Gcg(Gut−/-) mice. Surprisingly, the actions of metformin to increase plasma GLP-1 levels were substantially attenuated in the Gcg(DistalGut−/-) mice. CONCLUSION: These findings further establish the importance of the proximal gut for the acute response to nutrient-related GLP-1 secretagogues. In contrast, we identify essential contributions of the distal gut to (i) the rapid induction of circulating GLP-1 levels in response to pharmacological selective agonism of G-protein-coupled receptors, (ii) the increased GLP-1 levels following the activation of Toll-Like Receptors with LPS, and iii) the acute GLP-1 response to metformin. Collectively, these results reveal that distal gut Gcg + endocrine cells are rapid responders to structurally and functionally diverse GLP-1 secretagogues.