Cargando…
Opening the black box of machine learning in radiology: can the proximity of annotated cases be a way?
Machine learning (ML) and deep learning (DL) systems, currently employed in medical image analysis, are data-driven models often considered as black boxes. However, improved transparency is needed to translate automated decision-making to clinical practice. To this aim, we propose a strategy to open...
Autores principales: | Baselli, Giuseppe, Codari, Marina, Sardanelli, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200961/ https://www.ncbi.nlm.nih.gov/pubmed/32372200 http://dx.doi.org/10.1186/s41747-020-00159-0 |
Ejemplares similares
-
Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States
por: Pesapane, Filippo, et al.
Publicado: (2018) -
Does Compression Sensory Axonopathy in the Proximal Tibia Contribute to Noncontact Anterior Cruciate Ligament Injury in a Causative Way?—A New Theory for the Injury Mechanism
por: Sonkodi, Balázs, et al.
Publicado: (2021) -
Artificial intelligence (AI) in biomedical research: discussion on authors’ declaration of AI in their articles title
por: Sardanelli, Francesco, et al.
Publicado: (2023) -
Functional annotation of hypothetical proteins – A review
por: Sivashankari, Selvarajan, et al.
Publicado: (2006) -
Fungome: Annotating proteins implicated in fungal pathogenesis
por: Gudimella, Ranganath, et al.
Publicado: (2010)