Cargando…
Noise Helps Optimization Escape From Saddle Points in the Synaptic Plasticity
Numerous experimental studies suggest that noise is inherent in the human brain. However, the functional importance of noise remains unknown. n particular, from a computational perspective, such stochasticity is potentially harmful to brain function. In machine learning, a large number of saddle poi...
Autores principales: | Fang, Ying, Yu, Zhaofei, Chen, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201302/ https://www.ncbi.nlm.nih.gov/pubmed/32410937 http://dx.doi.org/10.3389/fnins.2020.00343 |
Ejemplares similares
-
Large-N saddle points
por: Aragão de Carvalho, C, et al.
Publicado: (1980) -
Early warning signs for saddle-escape transitions in complex networks
por: Kuehn, Christian, et al.
Publicado: (2015) -
Synaptic Plasticity in Cortical Inhibitory Neurons: What Mechanisms May Help to Balance Synaptic Weight Changes?
por: Bannon, Nicholas M., et al.
Publicado: (2020) -
A Novel Synaptic Vesicle Fusion Path in the Rat Cerebral Cortex: The “Saddle” Point Hypothesis
por: Zampighi, Guido A., et al.
Publicado: (2014) -
A primal-dual algorithm framework for convex saddle-point optimization
por: Zhang, Benxin, et al.
Publicado: (2017)