Cargando…
Neuroprotective Activity of Methanolic Extract of Lysimachia christinae against Glutamate Toxicity in HT22 Cell and Its Protective Mechanisms
PURPOSE: Excessive glutamate amount can give oxidative stress to neuronal cells, and the accumulation of cell death can trigger the neurodegenerative disorders. In this study, we discovered the neuroprotective effect of Lysimachia christinae Hance in the mouse hippocampal HT22 cell line. METHOD: Ove...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201513/ https://www.ncbi.nlm.nih.gov/pubmed/32419811 http://dx.doi.org/10.1155/2020/5352034 |
_version_ | 1783529549085016064 |
---|---|
author | Ryu, Gahee Ma, Choong Je |
author_facet | Ryu, Gahee Ma, Choong Je |
author_sort | Ryu, Gahee |
collection | PubMed |
description | PURPOSE: Excessive glutamate amount can give oxidative stress to neuronal cells, and the accumulation of cell death can trigger the neurodegenerative disorders. In this study, we discovered the neuroprotective effect of Lysimachia christinae Hance in the mouse hippocampal HT22 cell line. METHOD: Overnight incubated HT22 cells were pretreated with L. christinae extract dose dependently (1, 10, and 100 μg/ml). Followed by then, glutamate was treated. These treated cells were incubated several times again, and cell viability, accumulation of reactive oxygen species (ROS) and Ca(2+), mitochondrial membrane potential (MMP), and glutathione-related enzyme amount were measured. RESULTS: As a result, L. christinae increases the cell viability by inhibiting the ROS and Ca(2+) formation, recovering the level of MMP and enhancing the activity of glutathione production compared with only vehicle-treated groups. CONCLUSION: These draw that L. christinae may remarkably decelerate the neurodegeneration by minimizing neuronal cell damage via oxidative stress. |
format | Online Article Text |
id | pubmed-7201513 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-72015132020-05-15 Neuroprotective Activity of Methanolic Extract of Lysimachia christinae against Glutamate Toxicity in HT22 Cell and Its Protective Mechanisms Ryu, Gahee Ma, Choong Je Evid Based Complement Alternat Med Research Article PURPOSE: Excessive glutamate amount can give oxidative stress to neuronal cells, and the accumulation of cell death can trigger the neurodegenerative disorders. In this study, we discovered the neuroprotective effect of Lysimachia christinae Hance in the mouse hippocampal HT22 cell line. METHOD: Overnight incubated HT22 cells were pretreated with L. christinae extract dose dependently (1, 10, and 100 μg/ml). Followed by then, glutamate was treated. These treated cells were incubated several times again, and cell viability, accumulation of reactive oxygen species (ROS) and Ca(2+), mitochondrial membrane potential (MMP), and glutathione-related enzyme amount were measured. RESULTS: As a result, L. christinae increases the cell viability by inhibiting the ROS and Ca(2+) formation, recovering the level of MMP and enhancing the activity of glutathione production compared with only vehicle-treated groups. CONCLUSION: These draw that L. christinae may remarkably decelerate the neurodegeneration by minimizing neuronal cell damage via oxidative stress. Hindawi 2020-01-13 /pmc/articles/PMC7201513/ /pubmed/32419811 http://dx.doi.org/10.1155/2020/5352034 Text en Copyright © 2020 Gahee Ryu and Choong Je Ma. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ryu, Gahee Ma, Choong Je Neuroprotective Activity of Methanolic Extract of Lysimachia christinae against Glutamate Toxicity in HT22 Cell and Its Protective Mechanisms |
title | Neuroprotective Activity of Methanolic Extract of Lysimachia christinae against Glutamate Toxicity in HT22 Cell and Its Protective Mechanisms |
title_full | Neuroprotective Activity of Methanolic Extract of Lysimachia christinae against Glutamate Toxicity in HT22 Cell and Its Protective Mechanisms |
title_fullStr | Neuroprotective Activity of Methanolic Extract of Lysimachia christinae against Glutamate Toxicity in HT22 Cell and Its Protective Mechanisms |
title_full_unstemmed | Neuroprotective Activity of Methanolic Extract of Lysimachia christinae against Glutamate Toxicity in HT22 Cell and Its Protective Mechanisms |
title_short | Neuroprotective Activity of Methanolic Extract of Lysimachia christinae against Glutamate Toxicity in HT22 Cell and Its Protective Mechanisms |
title_sort | neuroprotective activity of methanolic extract of lysimachia christinae against glutamate toxicity in ht22 cell and its protective mechanisms |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201513/ https://www.ncbi.nlm.nih.gov/pubmed/32419811 http://dx.doi.org/10.1155/2020/5352034 |
work_keys_str_mv | AT ryugahee neuroprotectiveactivityofmethanolicextractoflysimachiachristinaeagainstglutamatetoxicityinht22cellanditsprotectivemechanisms AT machoongje neuroprotectiveactivityofmethanolicextractoflysimachiachristinaeagainstglutamatetoxicityinht22cellanditsprotectivemechanisms |