Cargando…
Multimodal Retinal Image Analysis via Deep Learning for the Diagnosis of Intermediate Dry Age-Related Macular Degeneration: A Feasibility Study
RESULTS: The CNN trained using OCT alone showed a diagnostic accuracy of 94%, whilst the OCT-A trained CNN resulted in an accuracy of 91%. When multiple modalities were combined, the CNN accuracy increased to 96% in the AMD cohort. CONCLUSIONS: Here we demonstrate that superior diagnostic accuracy c...
Autores principales: | Vaghefi, Ehsan, Hill, Sophie, Kersten, Hannah M., Squirrell, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201607/ https://www.ncbi.nlm.nih.gov/pubmed/32411434 http://dx.doi.org/10.1155/2020/7493419 |
Ejemplares similares
-
Automation of Macular Degeneration Classification in the AREDS Dataset, Using a Novel Neural Network Design
por: Xie, Li, et al.
Publicado: (2023) -
Detection of smoking status from retinal images; a Convolutional Neural Network study
por: Vaghefi, Ehsan, et al.
Publicado: (2019) -
Application of Arterial Spin Labelling in Detecting Retinal Ischemia
por: Vaghefi, Ehsan, et al.
Publicado: (2017) -
Retinal Progression Biomarkers of Early and Intermediate Age-Related Macular Degeneration
por: Flores, Rita, et al.
Publicado: (2021) -
Examination of alternative eGFR definitions on the performance of deep learning models for detection of chronic kidney disease from fundus photographs
por: An, Songyang, et al.
Publicado: (2023)