Cargando…
Genetic Adaptations of an Island Pit-Viper to a Unique Sedentary Life with Extreme Seasonal Food Availability
The Shedao pit-viper (Gloydius shedaoensis) exhibits an extreme sedentary lifestyle. The island species exclusively feeds on migratory birds during migratory seasons and experiences prolonged hibernation and aestivation period each year (up to eight months). The sedentary strategy reduces energy exp...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202027/ https://www.ncbi.nlm.nih.gov/pubmed/32184370 http://dx.doi.org/10.1534/g3.120.401101 |
Sumario: | The Shedao pit-viper (Gloydius shedaoensis) exhibits an extreme sedentary lifestyle. The island species exclusively feeds on migratory birds during migratory seasons and experiences prolonged hibernation and aestivation period each year (up to eight months). The sedentary strategy reduces energy expenditure, but may trigger a series of adverse effects and the snakes have likely evolved genetic modifications to alleviate these effects. To investigate the genetic adaptations, we sequenced and compared the transcriptomes of the Shedao pit-viper and its closest mainland relative, the black eyebrow pit-viper (G. intermedius). The Shedao pit-viper revealed a low rate of molecular evolution compared to its mainland relative, which is possibly associated with metabolic suppression. Signals of positive selection were detected in two genes related to antithrombin (SERPINC1) and muscle atrophy (AARS). Those genes exert significant functions in thrombosis, inhibiting oxidation and prolonged fasting. Convergent and parallel substitutions of amino acid with two other sedentary vertebrates, which often suggest adaptation, were found in a fatty acid beta-oxidation related gene (ACATA1) and a circadian link gene (KLF10), which regulate lipogenesis, gluconeogenesis, and glycolysis. Furthermore, a circadian clock gene (CRY2) exhibited two amino acid substitutions specific to the Shedao pit-viper and one variant was predicted to affect protein function. Modifications of these genes and their related functions may have contributed to the survival of this island snake species with a sedentary lifestyle and extreme seasonal food availability. Our study demonstrated several important clues for future research on physiological and other phenotypic adaptation. |
---|