Cargando…
Anchor Away – A Fast, Reliable and Reversible Technique To Inhibit Proteins in Drosophila melanogaster
Several techniques have been developed to study specific gene function in loss-of-function situations. In Drosophila melanogaster, RNAi and the generation of mutant clones are widely used. However, both techniques have the limitation that there is a significant time lag before gene function is aboli...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202031/ https://www.ncbi.nlm.nih.gov/pubmed/32217630 http://dx.doi.org/10.1534/g3.120.401055 |
Sumario: | Several techniques have been developed to study specific gene function in loss-of-function situations. In Drosophila melanogaster, RNAi and the generation of mutant clones are widely used. However, both techniques have the limitation that there is a significant time lag before gene function is abolished. Given the relatively rapid development of Drosophila, such perdurance is a serious impediment to study gene function. Here we describe the adaptation of the anchor-away technique for use in Drosophila. Anchor-away was originally developed in yeast to quickly and efficiently abrogate the function of nuclear proteins by sequestering - anchoring - them away in a different cellular compartment. The required components are present in the cells, and the system is triggered by the addition of rapamycin, resulting in a rapid generation of a loss-of-function situation. We provide here proof of principle for the system by producing loss-of-function situations for two nuclear proteins – Pygopus and Brinker. The system allows to study the requirement of any protein during any time window, and at the same time circumvents difficulties, such as off-target effects or variable phenotypes, which are inherent in other techniques, for example RNAi. |
---|