Cargando…

Ultraconserved element uc.333 increases insulin sensitivity by binding to miR-223

Insulin resistance (IR) contributes to diabetes and aging. Ultraconserved elements (UCEs) are a class of long noncoding RNAs (lncRNAs) that are 100% conserved in humans, mice, and rats. We identified the lncRNA uc.333 using an lncRNA microarray and then used quantitative real-time polymerase chain r...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yang, Sun, Jingyu, Yao, He, Lin, Yajun, Wei, Jie, Hu, Gang, Guo, Jun, Li, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202487/
https://www.ncbi.nlm.nih.gov/pubmed/32303004
http://dx.doi.org/10.18632/aging.103020
Descripción
Sumario:Insulin resistance (IR) contributes to diabetes and aging. Ultraconserved elements (UCEs) are a class of long noncoding RNAs (lncRNAs) that are 100% conserved in humans, mice, and rats. We identified the lncRNA uc.333 using an lncRNA microarray and then used quantitative real-time polymerase chain reaction to analyze its expression in the livers of nonalcoholic fatty liver disease (NAFLD) patients, db/db mice, high-fat diet–fed mice, IL-6-treated mice, and TNF-α-treated mice. The underlying mechanisms of uc.333 in IR were investigated using fluorescence in situ hybridization, Western blot, and miRNA microarray analyses. The results revealed that uc.333 expression was decreased in liver tissues from NAFLD patients and treated mice. Furthermore, overexpression of uc.333 decreased IR, whereas knocking down uc.333 increased IR. We also confirmed that uc.333 binds to miR-223 and that the levels of miR-223 were increased in the livers of patients and treated mice. These findings showed that uc.333 improves IR by binding to miR-223; thus, uc.333 may be a useful target for the treatment and prevention of IR.