Cargando…
Heme oxygenase-1 inhibition mediates Gas6 to enhance bortezomib-sensitivity in multiple myeloma via ERK/STAT3 axis
Chemoresistance is still a critical challenge for efficient treatment of multiple myeloma (MM) during the bortezomib-based chemotherapy. Recent studies have suggested that heme oxygenase-1 (HO-1) is involved in apoptosis, proliferation and chemoresistance in cancer cells. Here we aim to investigate...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202511/ https://www.ncbi.nlm.nih.gov/pubmed/32298237 http://dx.doi.org/10.18632/aging.102996 |
Sumario: | Chemoresistance is still a critical challenge for efficient treatment of multiple myeloma (MM) during the bortezomib-based chemotherapy. Recent studies have suggested that heme oxygenase-1 (HO-1) is involved in apoptosis, proliferation and chemoresistance in cancer cells. Here we aim to investigate the role and mechanism of HO-1 in bortezomib-sensitivity to myeloma cells. In the study population, we found that HO-1 was highly expressed in CD138(+) primary myeloma cells, which was positively associated with Gas6 expression and Gas6 plasma levels in MM patients. Downregulation of HO-1 using pharmacological inhibitor ZnPPIX or siRNA knockdown significantly enhanced myeloma cell sensitivity to bortezomib in human primary CD138(+) cells, U266 and RPMI8226 cell lines. Mechanistically, HO-1 regulated Gas6 production via ERK/STAT3 axis. Combination with HO-1 inhibition increased bortezomib-induced apoptosis and antiproliferative effects via suppressing Gas6 production. These findings suggest that combination of bortezomib and HO-1 inhibitor may serve as a promising therapeutic target against bortezomib-resistant MM. |
---|