Cargando…
Anodal transcranial direct current stimulation reduces collinear lateral inhibition in normal peripheral vision
Collinear flanking stimuli can reduce the detectability of a Gabor target presented in peripheral vision. This phenomenon is called collinear lateral inhibition and it may contribute to crowding in peripheral vision. Perceptual learning can reduce collinear lateral inhibition in peripheral vision, h...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202594/ https://www.ncbi.nlm.nih.gov/pubmed/32374787 http://dx.doi.org/10.1371/journal.pone.0232276 |
_version_ | 1783529729132855296 |
---|---|
author | Raveendran, Rajkumar Nallour Tsang, Katelyn Tiwana, Dilraj Chow, Amy Thompson, Benjamin |
author_facet | Raveendran, Rajkumar Nallour Tsang, Katelyn Tiwana, Dilraj Chow, Amy Thompson, Benjamin |
author_sort | Raveendran, Rajkumar Nallour |
collection | PubMed |
description | Collinear flanking stimuli can reduce the detectability of a Gabor target presented in peripheral vision. This phenomenon is called collinear lateral inhibition and it may contribute to crowding in peripheral vision. Perceptual learning can reduce collinear lateral inhibition in peripheral vision, however intensive training is required. Our aim was to assess whether modulation of collinear lateral inhibition can be achieved within a short time-frame using a single 20-minute session of primary visual cortex anodal transcranial direct current stimulation (a-tDCS). Thirteen observers with normal vision performed a 2AFC contrast detection task with collinear flankers positioned at a distance of 2λ from the target (lateral inhibition) or 6λ (control condition). The stimuli were presented 6° to the left of a central cross and fixation was monitored with an infra-red eye tracker. Participants each completed two randomly sequenced, single-masked stimulation sessions; real anodal tDCS and sham tDCS. For the 2λ separation condition, a-tDCS induced a significant reduction in detection threshold (reduced lateral inhibition). Sham stimulation had no effect. No effects of a-tDCS were observed for the 6λ separation condition. This result lays the foundation for future work investigating whether a-tDCS may be useful as a visual rehabilitation tool for individuals with central vision loss who are reliant on peripheral vision. |
format | Online Article Text |
id | pubmed-7202594 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-72025942020-05-12 Anodal transcranial direct current stimulation reduces collinear lateral inhibition in normal peripheral vision Raveendran, Rajkumar Nallour Tsang, Katelyn Tiwana, Dilraj Chow, Amy Thompson, Benjamin PLoS One Research Article Collinear flanking stimuli can reduce the detectability of a Gabor target presented in peripheral vision. This phenomenon is called collinear lateral inhibition and it may contribute to crowding in peripheral vision. Perceptual learning can reduce collinear lateral inhibition in peripheral vision, however intensive training is required. Our aim was to assess whether modulation of collinear lateral inhibition can be achieved within a short time-frame using a single 20-minute session of primary visual cortex anodal transcranial direct current stimulation (a-tDCS). Thirteen observers with normal vision performed a 2AFC contrast detection task with collinear flankers positioned at a distance of 2λ from the target (lateral inhibition) or 6λ (control condition). The stimuli were presented 6° to the left of a central cross and fixation was monitored with an infra-red eye tracker. Participants each completed two randomly sequenced, single-masked stimulation sessions; real anodal tDCS and sham tDCS. For the 2λ separation condition, a-tDCS induced a significant reduction in detection threshold (reduced lateral inhibition). Sham stimulation had no effect. No effects of a-tDCS were observed for the 6λ separation condition. This result lays the foundation for future work investigating whether a-tDCS may be useful as a visual rehabilitation tool for individuals with central vision loss who are reliant on peripheral vision. Public Library of Science 2020-05-06 /pmc/articles/PMC7202594/ /pubmed/32374787 http://dx.doi.org/10.1371/journal.pone.0232276 Text en © 2020 Raveendran et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Raveendran, Rajkumar Nallour Tsang, Katelyn Tiwana, Dilraj Chow, Amy Thompson, Benjamin Anodal transcranial direct current stimulation reduces collinear lateral inhibition in normal peripheral vision |
title | Anodal transcranial direct current stimulation reduces collinear lateral inhibition in normal peripheral vision |
title_full | Anodal transcranial direct current stimulation reduces collinear lateral inhibition in normal peripheral vision |
title_fullStr | Anodal transcranial direct current stimulation reduces collinear lateral inhibition in normal peripheral vision |
title_full_unstemmed | Anodal transcranial direct current stimulation reduces collinear lateral inhibition in normal peripheral vision |
title_short | Anodal transcranial direct current stimulation reduces collinear lateral inhibition in normal peripheral vision |
title_sort | anodal transcranial direct current stimulation reduces collinear lateral inhibition in normal peripheral vision |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202594/ https://www.ncbi.nlm.nih.gov/pubmed/32374787 http://dx.doi.org/10.1371/journal.pone.0232276 |
work_keys_str_mv | AT raveendranrajkumarnallour anodaltranscranialdirectcurrentstimulationreducescollinearlateralinhibitioninnormalperipheralvision AT tsangkatelyn anodaltranscranialdirectcurrentstimulationreducescollinearlateralinhibitioninnormalperipheralvision AT tiwanadilraj anodaltranscranialdirectcurrentstimulationreducescollinearlateralinhibitioninnormalperipheralvision AT chowamy anodaltranscranialdirectcurrentstimulationreducescollinearlateralinhibitioninnormalperipheralvision AT thompsonbenjamin anodaltranscranialdirectcurrentstimulationreducescollinearlateralinhibitioninnormalperipheralvision |