Cargando…

2.7 Å cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope

Here we present the structure of mouse H-chain apoferritin at 2.7 Å (FSC = 0.143) solved by single particle cryogenic electron microscopy (cryo-EM) using a 200 kV device, the Thermo Fisher Glacios(®). This is a compact, two-lens illumination system with a constant power objective lens, without any e...

Descripción completa

Detalles Bibliográficos
Autores principales: Hamdi, Farzad, Tüting, Christian, Semchonok, Dmitry A., Visscher, Koen M., Kyrilis, Fotis L., Meister, Annette, Skalidis, Ioannis, Schmidt, Lisa, Parthier, Christoph, Stubbs, Milton T., Kastritis, Panagiotis L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202636/
https://www.ncbi.nlm.nih.gov/pubmed/32374767
http://dx.doi.org/10.1371/journal.pone.0232540
_version_ 1783529738329915392
author Hamdi, Farzad
Tüting, Christian
Semchonok, Dmitry A.
Visscher, Koen M.
Kyrilis, Fotis L.
Meister, Annette
Skalidis, Ioannis
Schmidt, Lisa
Parthier, Christoph
Stubbs, Milton T.
Kastritis, Panagiotis L.
author_facet Hamdi, Farzad
Tüting, Christian
Semchonok, Dmitry A.
Visscher, Koen M.
Kyrilis, Fotis L.
Meister, Annette
Skalidis, Ioannis
Schmidt, Lisa
Parthier, Christoph
Stubbs, Milton T.
Kastritis, Panagiotis L.
author_sort Hamdi, Farzad
collection PubMed
description Here we present the structure of mouse H-chain apoferritin at 2.7 Å (FSC = 0.143) solved by single particle cryogenic electron microscopy (cryo-EM) using a 200 kV device, the Thermo Fisher Glacios(®). This is a compact, two-lens illumination system with a constant power objective lens, without any energy filters or aberration correctors, often thought of as a “screening cryo-microscope”. Coulomb potential maps reveal clear densities for main chain carbonyl oxygens, residue side chains (including alternative conformations) and bound solvent molecules. We used a quasi-crystallographic reciprocal space approach to fit model coordinates to the experimental cryo-EM map. We argue that the advantages offered by (a) the high electronic and mechanical stability of the microscope, (b) the high emission stability and low beam energy spread of the high brightness Field Emission Gun (X-FEG), (c) direct electron detection technology and (d) particle-based Contrast Transfer Function (CTF) refinement have contributed to achieving high resolution. Overall, we show that basic electron optical settings for automated cryo-electron microscopy imaging can be used to determine structures approaching atomic resolution.
format Online
Article
Text
id pubmed-7202636
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-72026362020-05-12 2.7 Å cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope Hamdi, Farzad Tüting, Christian Semchonok, Dmitry A. Visscher, Koen M. Kyrilis, Fotis L. Meister, Annette Skalidis, Ioannis Schmidt, Lisa Parthier, Christoph Stubbs, Milton T. Kastritis, Panagiotis L. PLoS One Research Article Here we present the structure of mouse H-chain apoferritin at 2.7 Å (FSC = 0.143) solved by single particle cryogenic electron microscopy (cryo-EM) using a 200 kV device, the Thermo Fisher Glacios(®). This is a compact, two-lens illumination system with a constant power objective lens, without any energy filters or aberration correctors, often thought of as a “screening cryo-microscope”. Coulomb potential maps reveal clear densities for main chain carbonyl oxygens, residue side chains (including alternative conformations) and bound solvent molecules. We used a quasi-crystallographic reciprocal space approach to fit model coordinates to the experimental cryo-EM map. We argue that the advantages offered by (a) the high electronic and mechanical stability of the microscope, (b) the high emission stability and low beam energy spread of the high brightness Field Emission Gun (X-FEG), (c) direct electron detection technology and (d) particle-based Contrast Transfer Function (CTF) refinement have contributed to achieving high resolution. Overall, we show that basic electron optical settings for automated cryo-electron microscopy imaging can be used to determine structures approaching atomic resolution. Public Library of Science 2020-05-06 /pmc/articles/PMC7202636/ /pubmed/32374767 http://dx.doi.org/10.1371/journal.pone.0232540 Text en © 2020 Hamdi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Hamdi, Farzad
Tüting, Christian
Semchonok, Dmitry A.
Visscher, Koen M.
Kyrilis, Fotis L.
Meister, Annette
Skalidis, Ioannis
Schmidt, Lisa
Parthier, Christoph
Stubbs, Milton T.
Kastritis, Panagiotis L.
2.7 Å cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope
title 2.7 Å cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope
title_full 2.7 Å cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope
title_fullStr 2.7 Å cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope
title_full_unstemmed 2.7 Å cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope
title_short 2.7 Å cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope
title_sort 2.7 å cryo-em structure of vitrified m. musculus h-chain apoferritin from a compact 200 kev cryo-microscope
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202636/
https://www.ncbi.nlm.nih.gov/pubmed/32374767
http://dx.doi.org/10.1371/journal.pone.0232540
work_keys_str_mv AT hamdifarzad 27acryoemstructureofvitrifiedmmusculushchainapoferritinfromacompact200kevcryomicroscope
AT tutingchristian 27acryoemstructureofvitrifiedmmusculushchainapoferritinfromacompact200kevcryomicroscope
AT semchonokdmitrya 27acryoemstructureofvitrifiedmmusculushchainapoferritinfromacompact200kevcryomicroscope
AT visscherkoenm 27acryoemstructureofvitrifiedmmusculushchainapoferritinfromacompact200kevcryomicroscope
AT kyrilisfotisl 27acryoemstructureofvitrifiedmmusculushchainapoferritinfromacompact200kevcryomicroscope
AT meisterannette 27acryoemstructureofvitrifiedmmusculushchainapoferritinfromacompact200kevcryomicroscope
AT skalidisioannis 27acryoemstructureofvitrifiedmmusculushchainapoferritinfromacompact200kevcryomicroscope
AT schmidtlisa 27acryoemstructureofvitrifiedmmusculushchainapoferritinfromacompact200kevcryomicroscope
AT parthierchristoph 27acryoemstructureofvitrifiedmmusculushchainapoferritinfromacompact200kevcryomicroscope
AT stubbsmiltont 27acryoemstructureofvitrifiedmmusculushchainapoferritinfromacompact200kevcryomicroscope
AT kastritispanagiotisl 27acryoemstructureofvitrifiedmmusculushchainapoferritinfromacompact200kevcryomicroscope