Cargando…
Production of graphene nanoplate/polyetheretherketone composites by semi-industrial melt-compounding
Current studies on nanocomposites have focused on their multifunctional properties and their industrial production. In this work, polyetheretherketone (PEEK)/graphene nanoplate (GNP) composites were produced by a direct semi-industrial process. Different percentages of untreated GNP (1, 5, and 10 wt...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203073/ https://www.ncbi.nlm.nih.gov/pubmed/32382670 http://dx.doi.org/10.1016/j.heliyon.2020.e03740 |
Sumario: | Current studies on nanocomposites have focused on their multifunctional properties and their industrial production. In this work, polyetheretherketone (PEEK)/graphene nanoplate (GNP) composites were produced by a direct semi-industrial process. Different percentages of untreated GNP (1, 5, and 10 wt.%) were added to PEEK by employing melt-compounding followed by injection-moulding. Despite the semi-industrial approach used, the modulus, strength, and Poisson coefficient of the nanocomposites (1 and 5 wt.%) were not significantly affected by the addition of GNP. However, there was a slight decrease in the strength at 10 wt.% GNP. Our study also shows that the thermal conductivities of PEEK/GNP composites are up to 2.5 times higher than that of pure PEEK. |
---|