Cargando…
Microwave-assisted urea modified crop residue in Cu(2+) scavenging
Raphia hookeri fruit epicarp (RHFE) was used in a novel adsorbent preparation via a combination of urea modification and microwave irradiation. The prepared adsorbent (URHFE) was characterized physicochemically, spectroscopically and microscopically characterized. URHFE efficiency in Cu(2+) scavengi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203079/ https://www.ncbi.nlm.nih.gov/pubmed/32382675 http://dx.doi.org/10.1016/j.heliyon.2020.e03759 |
Sumario: | Raphia hookeri fruit epicarp (RHFE) was used in a novel adsorbent preparation via a combination of urea modification and microwave irradiation. The prepared adsorbent (URHFE) was characterized physicochemically, spectroscopically and microscopically characterized. URHFE efficiency in Cu(2+) scavenging was tested with focus on operational parameters such as pH, dosage, concentration, contact time, ionic strength and temperature. Adsorption data were tested with isotherms and kinetics models. Optimum adsorption occurred at pH of 5.5. The presence of competing ion decreased Cu(2+) removal and this varied with competing ion concentration. Cu(2+) uptake decreased with increase in temperature. Percentage desorption was found generally low. The Langmuir monolayer adsorption capacity (q(max)) was obtained to be 144.93 mg/g, this compared well in effectiveness with other adsorbent previously reported. Dubinin Radushkevich (D-R) isotherm model suggests that adsorption mechanism was chemical in nature. Pseudo second order kinetics best described the adsorption kinetics while multilinear adsorption was observed from the intraparticle diffusion model. |
---|