Cargando…
Discovering the hidden messages within cell trajectories using a deep learning approach for in vitro evaluation of cancer drug treatments
We describe a novel method to achieve a universal, massive, and fully automated analysis of cell motility behaviours, starting from time-lapse microscopy images. The approach was inspired by the recent successes in application of machine learning for style recognition in paintings and artistic style...
Autores principales: | Mencattini, A., Di Giuseppe, D., Comes, M. C., Casti, P., Corsi, F., Bertani, F. R., Ghibelli, L., Businaro, L., Di Natale, C., Parrini, M. C., Martinelli, E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203117/ https://www.ncbi.nlm.nih.gov/pubmed/32376840 http://dx.doi.org/10.1038/s41598-020-64246-3 |
Ejemplares similares
-
Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network
por: Comes, Maria Colomba, et al.
Publicado: (2020) -
Deep-Manager: a versatile tool for optimal feature selection in live-cell imaging analysis
por: Mencattini, A., et al.
Publicado: (2023) -
The influence of spatial and temporal resolutions on the analysis of cell-cell interaction: a systematic study for time-lapse microscopy applications
por: Comes, M. C., et al.
Publicado: (2019) -
Deciphering Cancer Cell Behavior From Motility and Shape Features: Peer Prediction and Dynamic Selection to Support Cancer Diagnosis and Therapy
por: D'Orazio, Michele, et al.
Publicado: (2020) -
A Camera Sensors-Based System to Study Drug Effects on In Vitro Motility: The Case of PC-3 Prostate Cancer Cells
por: Comes, Maria Colomba, et al.
Publicado: (2020)