Cargando…
Learning physical properties of liquid crystals with deep convolutional neural networks
Machine learning algorithms have been available since the 1990s, but it is much more recently that they have come into use also in the physical sciences. While these algorithms have already proven to be useful in uncovering new properties of materials and in simplifying experimental protocols, their...
Autores principales: | Sigaki, Higor Y. D., Lenzi, Ervin K., Zola, Rafael S., Perc, Matjaž, Ribeiro, Haroldo V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203147/ https://www.ncbi.nlm.nih.gov/pubmed/32376993 http://dx.doi.org/10.1038/s41598-020-63662-9 |
Ejemplares similares
-
Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market
por: Sigaki, Higor Y. D., et al.
Publicado: (2019) -
Collective dynamics of stock market efficiency
por: Alves, Luiz G. A., et al.
Publicado: (2020) -
Machine learning partners in criminal networks
por: Lopes, Diego D., et al.
Publicado: (2022) -
Age and market capitalization drive large price variations of cryptocurrencies
por: Pessa, Arthur A. B., et al.
Publicado: (2023) -
City size and the spreading of COVID-19 in Brazil
por: Ribeiro, Haroldo V., et al.
Publicado: (2020)