Cargando…
Age and Species Comparisons of Visual Mental Manipulation Ability as Evidence for its Development and Evolution
Intelligent behavior is shaped by the abilities to store and manipulate information in visual working memory. Although humans and various non-human animals demonstrate similar storage capacities, the evolution of manipulation ability remains relatively unspecified. To what extent are manipulation li...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203154/ https://www.ncbi.nlm.nih.gov/pubmed/32376944 http://dx.doi.org/10.1038/s41598-020-64666-1 |
Sumario: | Intelligent behavior is shaped by the abilities to store and manipulate information in visual working memory. Although humans and various non-human animals demonstrate similar storage capacities, the evolution of manipulation ability remains relatively unspecified. To what extent are manipulation limits unique to humans versus shared across species? Here, we compare behavioral signatures of manipulation ability demonstrated by human adults and 6-to-8-year-old children with that of an animal separated from humans by over 300 million years of evolution: a Grey parrot (Psittacus erithacus). All groups of participants completed a variant of the “Shell Game”, which required mentally updating the locations of varying set sizes of occluded objects that swapped places a number of times. The parrot not only demonstrated above-chance performance, but also outperformed children across all conditions. Indeed, the parrot’s accuracy was comparable to (and slightly better than) human adults’ over 12/14 set-size/number-of-swaps combinations, until four items were manipulated with 3–4 swaps, where performance decreased toward that of 6- to 8-year-olds. These results suggest that manipulation of visual working memory representations is an evolutionarily ancient ability. An important next step in this research program is establishing variability across species, and identifying the evolutionary origins (analogous or homologous) of manipulation mechanisms. |
---|