Cargando…
Isolation, Characterization and Genomic Analysis of a Novel Bacteriophage VB_EcoS-Golestan Infecting Multidrug-Resistant Escherichia coli Isolated from Urinary Tract Infection
Escherichia coli (E. coli) is one of the most common uropathogenic bacteria. The emergence of multi-drug resistance among these bacteria resulted in a worldwide public health problem which requires alternative treatment approaches such as phage therapy. In this study, phage VB_EcoS-Golestan, a membe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203180/ https://www.ncbi.nlm.nih.gov/pubmed/32376832 http://dx.doi.org/10.1038/s41598-020-63048-x |
Sumario: | Escherichia coli (E. coli) is one of the most common uropathogenic bacteria. The emergence of multi-drug resistance among these bacteria resulted in a worldwide public health problem which requires alternative treatment approaches such as phage therapy. In this study, phage VB_EcoS-Golestan, a member of Siphoviridae family, with high lytic ability against E. coli isolates, was isolated from wastewater. Its burst size was large and about 100 plaque-forming units/infected cell, rapid adsorption time, and high resistance to a broad range of pH and temperatures. Bioinformatics analysis of the genomic sequence suggests that VB_EcoS-Golestan is a new phage closely related to Escherichia phages in the Kagunavirus genus, Guernseyvirinae subfamily of Siphoviridae. The genome size was 44829 bp bp that encodes 78 putative ORFs, no tRNAs, 7 potential promoter sequences and 13 Rho-factor-independent terminators. No lysogenic mediated genes were detected in VB_EcoS-Golestan genome. Overall VB_EcoS-Golestan might be used as a potential treatment approach for controlling E. coli mediated urinary tract infection, however, further studies are essential to ensure its safety. |
---|