Cargando…
Predicting Inpatient Falls Using Natural Language Processing of Nursing Records Obtained From Japanese Electronic Medical Records: Case-Control Study
BACKGROUND: Falls in hospitals are the most common risk factor that affects the safety of inpatients and can result in severe harm. Therefore, preventing falls is one of the most important areas of risk management for health care organizations. However, existing methods for predicting falls are labo...
Autores principales: | Nakatani, Hayao, Nakao, Masatoshi, Uchiyama, Hidefumi, Toyoshiba, Hiroyoshi, Ochiai, Chikayuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203618/ https://www.ncbi.nlm.nih.gov/pubmed/32319959 http://dx.doi.org/10.2196/16970 |
Ejemplares similares
-
Detecting inpatient falls by using natural language processing of electronic medical records
por: Toyabe, Shin-ichi
Publicado: (2012) -
Records fall at Cornell
Publicado: (2005) -
Development and validation of interpretable machine learning models for inpatient fall events and electronic medical record integration
por: Shim, Soyun, et al.
Publicado: (2022) -
The Japanese recorder
Publicado: (1994) -
Cerebrovascular disease case identification in inpatient electronic medical record data using natural language processing
por: Pan, Jie, et al.
Publicado: (2023)