Cargando…
Contribution of Crystal Lattice Energy on the Dissolution Behavior of Eutectic Solid Dispersions
[Image: see text] In the literature, it is reported that eutectics lead to the enhanced dissolution of a poorly soluble compound. However, the solubility theory suggests that since crystal structures of two components are unchanged that all else being equal, the dissolution rates of a fused mixture...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203706/ https://www.ncbi.nlm.nih.gov/pubmed/32391455 http://dx.doi.org/10.1021/acsomega.9b03886 |
_version_ | 1783529917769580544 |
---|---|
author | Chaturvedi, Kaushalendra Shah, Harsh S. Nahar, Kajal Dave, Rutesh Morris, Kenneth R. |
author_facet | Chaturvedi, Kaushalendra Shah, Harsh S. Nahar, Kajal Dave, Rutesh Morris, Kenneth R. |
author_sort | Chaturvedi, Kaushalendra |
collection | PubMed |
description | [Image: see text] In the literature, it is reported that eutectics lead to the enhanced dissolution of a poorly soluble compound. However, the solubility theory suggests that since crystal structures of two components are unchanged that all else being equal, the dissolution rates of a fused mixture (FM) should be the same as a physical mixture (PM). The influence of crystal lattice energy on dissolution profiles was investigated using the PM and FM. Experimental phase diagrams constructed using differential scanning calorimetry data were compared with those theoretically derived. Deviation of the experimental phase diagram curves from the theoretical model indicates the nonideal behavior of both systems (ibuprofen/poly(ethylene glycol)-6000 and acetaminophen/caffeine). Both the binary systems showed an increase in the dissolution rate of the PM and FM. However, the dissolution from the PM was comparable with the FM’s dissolution profile. The theoretical solubility calculations using the modified solubility equation showed that the use of the eutectic temperature instead of the drug’s melting point should give a 3–4-fold increase in drug solubility. However, the correlation between dissolution and solubility calculation showed that the FM did not improve the dissolution when compared with the respective PM’s dissolution profile. The proposed explanation is that the unchanged crystal lattice energy in eutectics still limits the solubility and therefore the dissolution rate. |
format | Online Article Text |
id | pubmed-7203706 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-72037062020-05-08 Contribution of Crystal Lattice Energy on the Dissolution Behavior of Eutectic Solid Dispersions Chaturvedi, Kaushalendra Shah, Harsh S. Nahar, Kajal Dave, Rutesh Morris, Kenneth R. ACS Omega [Image: see text] In the literature, it is reported that eutectics lead to the enhanced dissolution of a poorly soluble compound. However, the solubility theory suggests that since crystal structures of two components are unchanged that all else being equal, the dissolution rates of a fused mixture (FM) should be the same as a physical mixture (PM). The influence of crystal lattice energy on dissolution profiles was investigated using the PM and FM. Experimental phase diagrams constructed using differential scanning calorimetry data were compared with those theoretically derived. Deviation of the experimental phase diagram curves from the theoretical model indicates the nonideal behavior of both systems (ibuprofen/poly(ethylene glycol)-6000 and acetaminophen/caffeine). Both the binary systems showed an increase in the dissolution rate of the PM and FM. However, the dissolution from the PM was comparable with the FM’s dissolution profile. The theoretical solubility calculations using the modified solubility equation showed that the use of the eutectic temperature instead of the drug’s melting point should give a 3–4-fold increase in drug solubility. However, the correlation between dissolution and solubility calculation showed that the FM did not improve the dissolution when compared with the respective PM’s dissolution profile. The proposed explanation is that the unchanged crystal lattice energy in eutectics still limits the solubility and therefore the dissolution rate. American Chemical Society 2020-04-21 /pmc/articles/PMC7203706/ /pubmed/32391455 http://dx.doi.org/10.1021/acsomega.9b03886 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Chaturvedi, Kaushalendra Shah, Harsh S. Nahar, Kajal Dave, Rutesh Morris, Kenneth R. Contribution of Crystal Lattice Energy on the Dissolution Behavior of Eutectic Solid Dispersions |
title | Contribution of Crystal Lattice Energy on the Dissolution
Behavior of Eutectic Solid Dispersions |
title_full | Contribution of Crystal Lattice Energy on the Dissolution
Behavior of Eutectic Solid Dispersions |
title_fullStr | Contribution of Crystal Lattice Energy on the Dissolution
Behavior of Eutectic Solid Dispersions |
title_full_unstemmed | Contribution of Crystal Lattice Energy on the Dissolution
Behavior of Eutectic Solid Dispersions |
title_short | Contribution of Crystal Lattice Energy on the Dissolution
Behavior of Eutectic Solid Dispersions |
title_sort | contribution of crystal lattice energy on the dissolution
behavior of eutectic solid dispersions |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203706/ https://www.ncbi.nlm.nih.gov/pubmed/32391455 http://dx.doi.org/10.1021/acsomega.9b03886 |
work_keys_str_mv | AT chaturvedikaushalendra contributionofcrystallatticeenergyonthedissolutionbehaviorofeutecticsoliddispersions AT shahharshs contributionofcrystallatticeenergyonthedissolutionbehaviorofeutecticsoliddispersions AT naharkajal contributionofcrystallatticeenergyonthedissolutionbehaviorofeutecticsoliddispersions AT daverutesh contributionofcrystallatticeenergyonthedissolutionbehaviorofeutecticsoliddispersions AT morriskennethr contributionofcrystallatticeenergyonthedissolutionbehaviorofeutecticsoliddispersions |