Cargando…
PARC: ultrafast and accurate clustering of phenotypic data of millions of single cells
MOTIVATION: New single-cell technologies continue to fuel the explosive growth in the scale of heterogeneous single-cell data. However, existing computational methods are inadequately scalable to large datasets and therefore cannot uncover the complex cellular heterogeneity. RESULTS: We introduce a...
Autores principales: | Stassen, Shobana V, Siu, Dickson M D, Lee, Kelvin C M, Ho, Joshua W K, So, Hayden K H, Tsia, Kevin K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203756/ https://www.ncbi.nlm.nih.gov/pubmed/31971583 http://dx.doi.org/10.1093/bioinformatics/btaa042 |
Ejemplares similares
-
Generalized and scalable trajectory inference in single-cell omics data with VIA
por: Stassen, Shobana V., et al.
Publicado: (2021) -
CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
por: Lin, Peijie, et al.
Publicado: (2017) -
CERN's PaRC workstation cluster for engineering computing
por: Bell, T, et al.
Publicado: (1994) -
Ultrafast measurements of optical spectral coherence by single-shot time-stretch interferometry
por: Xu, Yiqing, et al.
Publicado: (2016) -
J-PARC Symposium 2019
por: Saito, Naohito
Publicado: (2021)