Cargando…
Soil properties changes earthworm diversity indices in different agro-ecosystem
BACKGROUND: Earthworm communities are generally very sensitive to physico-chemical properties of the soil in different agro-ecosystem i.e. cultivated or non-cultivated which directly or indirectly influence the earthworm survival. The difference in physico-chemical properties of soil at different si...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203807/ https://www.ncbi.nlm.nih.gov/pubmed/32375784 http://dx.doi.org/10.1186/s12898-020-00296-5 |
_version_ | 1783529938588008448 |
---|---|
author | Singh, Sharanpreet Sharma, Ayushi Khajuria, Kiran Singh, Jaswinder Vig, Adarsh Pal |
author_facet | Singh, Sharanpreet Sharma, Ayushi Khajuria, Kiran Singh, Jaswinder Vig, Adarsh Pal |
author_sort | Singh, Sharanpreet |
collection | PubMed |
description | BACKGROUND: Earthworm communities are generally very sensitive to physico-chemical properties of the soil in different agro-ecosystem i.e. cultivated or non-cultivated which directly or indirectly influence the earthworm survival. The difference in physico-chemical properties of soil at different sites contributed to the formation of population patches for earthworm species. Understanding the physico-chemical properties of soil at a particular site could facilitate the prediction of earthworm species at that site. The objective of the present study was to investigate the diversity, abundance, and distribution of earthworms in cultivated and non-cultivated agroecosystems and their physico-chemical properties affecting the earthworm diversity and abundance. RESULTS: Total 10 species of earthworms i.e. Amynthas alexandri, Amynthas morrisi, Eutyphoeus incommodus, Eutyphoeus waltoni, Metaphire birmanica, Metaphire houlleti, Metaphire posthuma, Octochaetona beatrix, Perionyx excavatus, and Polypheretima elongata, were reported. Out of all the reported species, Metaphire posthuma was found to be the most abundant earthworm species in both cultivated and non-cultivated agroecosystems with the occurrence at 56.81% sites. The Shannon-Wiener index (H), Margalef species richness index (D(Mg)) and Pielou species evenness (E) was ranged from 0 to 0.86, 0 to 0.64 and 0.78 to 1 respectively. The principal component analysis resulted in four principal components i.e. PC1, PC2, PC3 and PC4 which contributing variance (%) of 22.96, 19.37, 14.23 and 10.10 respectively. The principal component analysis also showed that physico-chemical parameters of soil such as EC, pH, TDS, texture, OC, moisture, etc. play a critical role in earthworm distribution. CONCLUSION: The conventional farming system has a negative effect on the earthworm diversity in the soil while the physico-chemical properties of soil also have a determinant effect on the same. Earthworms abundance in the present study have significant direct relation with soil properties at a particular site and vice versa. The diversity indices also change due to the conventional farming system which directly affects the earthworm abundance. |
format | Online Article Text |
id | pubmed-7203807 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-72038072020-05-09 Soil properties changes earthworm diversity indices in different agro-ecosystem Singh, Sharanpreet Sharma, Ayushi Khajuria, Kiran Singh, Jaswinder Vig, Adarsh Pal BMC Ecol Research Article BACKGROUND: Earthworm communities are generally very sensitive to physico-chemical properties of the soil in different agro-ecosystem i.e. cultivated or non-cultivated which directly or indirectly influence the earthworm survival. The difference in physico-chemical properties of soil at different sites contributed to the formation of population patches for earthworm species. Understanding the physico-chemical properties of soil at a particular site could facilitate the prediction of earthworm species at that site. The objective of the present study was to investigate the diversity, abundance, and distribution of earthworms in cultivated and non-cultivated agroecosystems and their physico-chemical properties affecting the earthworm diversity and abundance. RESULTS: Total 10 species of earthworms i.e. Amynthas alexandri, Amynthas morrisi, Eutyphoeus incommodus, Eutyphoeus waltoni, Metaphire birmanica, Metaphire houlleti, Metaphire posthuma, Octochaetona beatrix, Perionyx excavatus, and Polypheretima elongata, were reported. Out of all the reported species, Metaphire posthuma was found to be the most abundant earthworm species in both cultivated and non-cultivated agroecosystems with the occurrence at 56.81% sites. The Shannon-Wiener index (H), Margalef species richness index (D(Mg)) and Pielou species evenness (E) was ranged from 0 to 0.86, 0 to 0.64 and 0.78 to 1 respectively. The principal component analysis resulted in four principal components i.e. PC1, PC2, PC3 and PC4 which contributing variance (%) of 22.96, 19.37, 14.23 and 10.10 respectively. The principal component analysis also showed that physico-chemical parameters of soil such as EC, pH, TDS, texture, OC, moisture, etc. play a critical role in earthworm distribution. CONCLUSION: The conventional farming system has a negative effect on the earthworm diversity in the soil while the physico-chemical properties of soil also have a determinant effect on the same. Earthworms abundance in the present study have significant direct relation with soil properties at a particular site and vice versa. The diversity indices also change due to the conventional farming system which directly affects the earthworm abundance. BioMed Central 2020-05-07 /pmc/articles/PMC7203807/ /pubmed/32375784 http://dx.doi.org/10.1186/s12898-020-00296-5 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Singh, Sharanpreet Sharma, Ayushi Khajuria, Kiran Singh, Jaswinder Vig, Adarsh Pal Soil properties changes earthworm diversity indices in different agro-ecosystem |
title | Soil properties changes earthworm diversity indices in different agro-ecosystem |
title_full | Soil properties changes earthworm diversity indices in different agro-ecosystem |
title_fullStr | Soil properties changes earthworm diversity indices in different agro-ecosystem |
title_full_unstemmed | Soil properties changes earthworm diversity indices in different agro-ecosystem |
title_short | Soil properties changes earthworm diversity indices in different agro-ecosystem |
title_sort | soil properties changes earthworm diversity indices in different agro-ecosystem |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203807/ https://www.ncbi.nlm.nih.gov/pubmed/32375784 http://dx.doi.org/10.1186/s12898-020-00296-5 |
work_keys_str_mv | AT singhsharanpreet soilpropertieschangesearthwormdiversityindicesindifferentagroecosystem AT sharmaayushi soilpropertieschangesearthwormdiversityindicesindifferentagroecosystem AT khajuriakiran soilpropertieschangesearthwormdiversityindicesindifferentagroecosystem AT singhjaswinder soilpropertieschangesearthwormdiversityindicesindifferentagroecosystem AT vigadarshpal soilpropertieschangesearthwormdiversityindicesindifferentagroecosystem |