Cargando…
Fully automated brain resection cavity delineation for radiation target volume definition in glioblastoma patients using deep learning
BACKGROUND: Automated brain tumor segmentation methods are computational algorithms that yield tumor delineation from, in this case, multimodal magnetic resonance imaging (MRI). We present an automated segmentation method and its results for resection cavity (RC) in glioblastoma multiforme (GBM) pat...
Autores principales: | Ermiş, Ekin, Jungo, Alain, Poel, Robert, Blatti-Moreno, Marcela, Meier, Raphael, Knecht, Urspeter, Aebersold, Daniel M., Fix, Michael K., Manser, Peter, Reyes, Mauricio, Herrmann, Evelyn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204033/ https://www.ncbi.nlm.nih.gov/pubmed/32375839 http://dx.doi.org/10.1186/s13014-020-01553-z |
Ejemplares similares
-
Impact of random outliers in auto-segmented targets on radiotherapy treatment plans for glioblastoma
por: Poel, Robert, et al.
Publicado: (2022) -
Deep-Learning-Based Dose Predictor for Glioblastoma–Assessing the Sensitivity and Robustness for Dose Awareness in Contouring
por: Poel, Robert, et al.
Publicado: (2023) -
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry
por: Meier, Raphael, et al.
Publicado: (2016) -
Vestibular dose correlates with dizziness after radiosurgery for the treatment of vestibular schwannoma
por: Ermiş, Ekin, et al.
Publicado: (2021) -
Feasibility of postoperative spine stereotactic body radiation therapy in proximity of carbon and titanium hybrid implants using a robotic radiotherapy device
por: Henzen, Dominik, et al.
Publicado: (2022)