Cargando…

Optimization of a rapid one-step platelet-rich plasma preparation method using syringe centrifugation with and without carprofen

BACKGROUND: Carprofen and platelet-rich plasma (PRP) are widely used in small animal clinical practice. Separation layers have been used during blood centrifugation to increase platelet yield. The objectives of this study were to (1) identify the optimal centrifugation force for the one-step PRP pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Apakupakul, Jutarat, Sattasathuchana, Panpicha, Chanloinapha, Phongsak, Thengchaisri, Naris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204049/
https://www.ncbi.nlm.nih.gov/pubmed/32375782
http://dx.doi.org/10.1186/s12917-020-02350-2
Descripción
Sumario:BACKGROUND: Carprofen and platelet-rich plasma (PRP) are widely used in small animal clinical practice. Separation layers have been used during blood centrifugation to increase platelet yield. The objectives of this study were to (1) identify the optimal centrifugation force for the one-step PRP preparation, (2) determine whether there is an advantage to using carprofen in one-step PRP preparation, and (3) compare platelet morphology from one-step PRP preparation with and without carprofen. We hypothesized that injectable carprofen (emulsion formula) could be used successfully as the separation layer in PRP preparation. RESULTS: Samples from 14 healthy dogs were used to determine the optimal centrifugation force using one-step PRP preparation in a disposable syringe without carprofen, with forces set at 300, 500, 700, 900, 1100, 1300, and 1500 xg for 5 min. Optimum centrifugation force, plasma volume, and platelet concentrations of one-step PRP preparation were found and recovered at 900 xg, 1.9 ± 0.28 ml, and 260.50 ± 58.39 X 10(3) cell/μl, respectively. Samples from 12 healthy dogs were used to determine the optimal force (with forces set at 300, 500, 700, and 900 xg) for 5 min using one-step PRP preparation with carprofen. Optimum centrifugation force, plasma volume, and platelet concentrations for one-step PRP preparation with carprofen were found and recovered at 500 xg, 0.62 ± 0.16 ml and 948.50 ± 261.40 X 10(3) cell/μl, respectively. One-step PRP preparation with carprofen increased the platelet yield from baseline by 1.76 and 4.95 fold, respectively. Samples from 3 healthy dogs were used to observe platelet morphologies after centrifugation by scanning electron microscopy. Images of platelets on glass slides from both preparation methods revealed pseudopods emerging from the margins of the discoid platelets. CONCLUSIONS: One-step PRP centrifugation both with and without carprofen increased the platelet yield, but using carprofen (emulsion formula) as a separation layer resulted in a higher platelet yield. The clinical usefulness of PRP products from these methods should be further investigated.