Cargando…
A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications
The ridge regression-type (Hoerl and Kennard, 1970) and Liu-type (Liu, 1993) estimators are consistently attractive shrinkage methods to reduce the effects of multicollinearity for both linear and nonlinear regression models. This paper proposes a new estimator to solve the multicollinearity problem...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204127/ https://www.ncbi.nlm.nih.gov/pubmed/32399315 http://dx.doi.org/10.1155/2020/9758378 |
_version_ | 1783529999619325952 |
---|---|
author | Kibria, B. M. Golam Lukman, Adewale F. |
author_facet | Kibria, B. M. Golam Lukman, Adewale F. |
author_sort | Kibria, B. M. Golam |
collection | PubMed |
description | The ridge regression-type (Hoerl and Kennard, 1970) and Liu-type (Liu, 1993) estimators are consistently attractive shrinkage methods to reduce the effects of multicollinearity for both linear and nonlinear regression models. This paper proposes a new estimator to solve the multicollinearity problem for the linear regression model. Theory and simulation results show that, under some conditions, it performs better than both Liu and ridge regression estimators in the smaller MSE sense. Two real-life (chemical and economic) data are analyzed to illustrate the findings of the paper. |
format | Online Article Text |
id | pubmed-7204127 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-72041272020-05-12 A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications Kibria, B. M. Golam Lukman, Adewale F. Scientifica (Cairo) Research Article The ridge regression-type (Hoerl and Kennard, 1970) and Liu-type (Liu, 1993) estimators are consistently attractive shrinkage methods to reduce the effects of multicollinearity for both linear and nonlinear regression models. This paper proposes a new estimator to solve the multicollinearity problem for the linear regression model. Theory and simulation results show that, under some conditions, it performs better than both Liu and ridge regression estimators in the smaller MSE sense. Two real-life (chemical and economic) data are analyzed to illustrate the findings of the paper. Hindawi 2020-04-14 /pmc/articles/PMC7204127/ /pubmed/32399315 http://dx.doi.org/10.1155/2020/9758378 Text en Copyright © 2020 B. M. Golam Kibria and Adewale F. Lukman. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kibria, B. M. Golam Lukman, Adewale F. A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications |
title | A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications |
title_full | A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications |
title_fullStr | A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications |
title_full_unstemmed | A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications |
title_short | A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications |
title_sort | new ridge-type estimator for the linear regression model: simulations and applications |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204127/ https://www.ncbi.nlm.nih.gov/pubmed/32399315 http://dx.doi.org/10.1155/2020/9758378 |
work_keys_str_mv | AT kibriabmgolam anewridgetypeestimatorforthelinearregressionmodelsimulationsandapplications AT lukmanadewalef anewridgetypeestimatorforthelinearregressionmodelsimulationsandapplications AT kibriabmgolam newridgetypeestimatorforthelinearregressionmodelsimulationsandapplications AT lukmanadewalef newridgetypeestimatorforthelinearregressionmodelsimulationsandapplications |