Cargando…
Baseline-adjusted proportional odds models for the quantification of treatment effects in trials with ordinal sum score outcomes
BACKGROUND: Sum scores of ordinal outcomes are common in randomized clinical trials. The approaches routinely employed for assessing treatment effects, such as t-tests or Wilcoxon tests, are not particularly powerful in detecting changes in relevant parameters or lack the ability to incorporate base...
Autores principales: | Buri, Muriel, Curt, Armin, Steeves, John, Hothorn, Torsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204322/ https://www.ncbi.nlm.nih.gov/pubmed/32375705 http://dx.doi.org/10.1186/s12874-020-00984-2 |
Ejemplares similares
-
Correction to: Baseline-adjusted proportional odds models for the quantification of treatment effects in trials with ordinal sum score outcomes
por: Buri, Muriel, et al.
Publicado: (2020) -
Autoregressive transitional ordinal model to test for treatment effect in neurological trials with complex endpoints
por: Tanadini, Lorenzo G., et al.
Publicado: (2016) -
Risk prediction models for discrete ordinal outcomes: Calibration and the impact of the proportional odds assumption
por: Edlinger, Michael, et al.
Publicado: (2021) -
On testing proportional odds assumptions for proportional odds models
por: Liu, Anqi, et al.
Publicado: (2023) -
Inclusive Trial Designs in Acute Spinal Cord Injuries: Prediction–Based Stratification of Clinical Walking Outcome and Projected Enrolment Frequencies
por: Cathomen, Adrian, et al.
Publicado: (2022)