Cargando…
DBT Masses Automatic Segmentation Using U-Net Neural Networks
To improve the automatic segmentation accuracy of breast masses in digital breast tomosynthesis (DBT) images, we propose a DBT mass automatic segmentation algorithm by using a U-Net architecture. Firstly, to suppress the background tissue noise and enhance the contrast of the mass candidate regions,...
Autores principales: | Lai, Xiaobo, Yang, Weiji, Li, Ruipeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204342/ https://www.ncbi.nlm.nih.gov/pubmed/32411285 http://dx.doi.org/10.1155/2020/7156165 |
Ejemplares similares
-
Automated Segmentation of Mass Regions in DBT Images Using a Dilated DCNN Approach
por: Ye, Jianming, et al.
Publicado: (2022) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network
por: Byra, Michal, et al.
Publicado: (2020) -
Automatic renal mass segmentation and classification on CT images based on 3D U-Net and ResNet algorithms
por: Zhao, Tongtong, et al.
Publicado: (2023) -
Automatic lung segmentation in chest X-ray images using improved U-Net
por: Liu, Wufeng, et al.
Publicado: (2022)