Cargando…
EEG Signal Reconstruction Using a Generative Adversarial Network With Wasserstein Distance and Temporal-Spatial-Frequency Loss
Applications based on electroencephalography (EEG) signals suffer from the mutual contradiction of high classification performance vs. low cost. The nature of this contradiction makes EEG signal reconstruction with high sampling rates and sensitivity challenging. Conventional reconstruction algorith...
Autores principales: | Luo, Tian-jian, Fan, Yachao, Chen, Lifei, Guo, Gongde, Zhou, Changle |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204859/ https://www.ncbi.nlm.nih.gov/pubmed/32425763 http://dx.doi.org/10.3389/fninf.2020.00015 |
Ejemplares similares
-
Missing Features Reconstruction Using a Wasserstein Generative Adversarial Imputation Network
por: Friedjungová, Magda, et al.
Publicado: (2020) -
Conditional Wasserstein Generative Adversarial Networks for Fast Detector Simulation
por: Blue, John
Publicado: (2021) -
Wasserstein Uncertainty Estimation for Adversarial Domain Matching
por: Wang, Rui, et al.
Publicado: (2022) -
Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network
por: Erdmann, Martin, et al.
Publicado: (2018) -
Panchromatic Image Super-Resolution Via Self Attention-Augmented Wasserstein Generative Adversarial Network
por: Du, Juan, et al.
Publicado: (2021)