Cargando…
ASAP-SML: An antibody sequence analysis pipeline using statistical testing and machine learning
Antibodies are capable of potently and specifically binding individual antigens and, in some cases, disrupting their functions. The key challenge in generating antibody-based inhibitors is the lack of fundamental information relating sequences of antibodies to their unique properties as inhibitors....
Autores principales: | Li, Xinmeng, Van Deventer, James A., Hassoun, Soha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205315/ https://www.ncbi.nlm.nih.gov/pubmed/32339164 http://dx.doi.org/10.1371/journal.pcbi.1007779 |
Ejemplares similares
-
ASAP - A Webserver for Immunoglobulin-Sequencing Analysis Pipeline
por: Avram, Oren, et al.
Publicado: (2018) -
Safety assessment of the process SML Maschinengesellschaft, based on SML technology, used to recycle post‐consumer PET into food contact materials
por: Lambré, Claude, et al.
Publicado: (2021) -
ASAP: a machine learning framework for local protein properties
por: Brandes, Nadav, et al.
Publicado: (2016) -
A Novel Modification of PSO Algorithm for SML Estimation of DOA
por: Chen, Haihua, et al.
Publicado: (2016) -
QCovSML: A reliable COVID-19 detection system using CBC biomarkers by a stacking machine learning model
por: Rahman, Tawsifur, et al.
Publicado: (2022)