Cargando…
Lysine bioavailability among 2 lipid-coated lysine products after exposure to silage
We conducted 2 experiments to determine lysine bioavailability from 2 lipid-coated lysine products. In an in vitro experiment we mixed each lipid-coated lysine product with either alfalfa- or corn-silage at different amounts of acidity. Scanning electron micrographs indicated that surface structure...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205348/ https://www.ncbi.nlm.nih.gov/pubmed/32704656 http://dx.doi.org/10.2527/tas2017.0037 |
Sumario: | We conducted 2 experiments to determine lysine bioavailability from 2 lipid-coated lysine products. In an in vitro experiment we mixed each lipid-coated lysine product with either alfalfa- or corn-silage at different amounts of acidity. Scanning electron micrographs indicated that surface structure of each lipid-coated lysine particle was eroded after mixing with silage. Additionally, visual evaluation of scanning electron micrographs suggested that peripheral surface abrasion of lipid-coated lysine may be greater when lipid-coated lysine was mixed with alfalfa silage in comparison to corn silage. In a corresponding experiment, in vivo measures of lysine bioavailability to sheep from 2 lipid-coated lysine products and lysine-HCl were determined after mixing in corn silage. Plasma lysine concentrations increased linearly (P < 0.01) in response to abomasal lysine infusion indicating that our model was sensitive to increases in metabolizable lysine flow. Bioavailability of each lipid-coated lysine source and dietary lysine-HCl were calculated to be 23, 15, and 18%, respectively. Even though each dietary source of lysine increased plasma lysine, rates of increases in plasma lysine from one lipid-coated lysine source (linear; P = 0.20) and lysine-HCl (linear; P = 0.11) were not different from plasma lysine levels supported by diet alone. However, the rate of plasma lysine increase in response to lysine from the other lipid-coated lysine source was greater (P = 0.04) than plasma lysine from feed alone. Nonetheless, the rate of plasma lysine increase in response to lipid-coated lysine did not differ (P ≥ 0.70) from the rate of plasma lysine increase from lysine-HCl. Clearly, methods of manufacture, together with physical and chemical characteristics of diet, can impact amounts of metabolizable lysine provided from lipid-coated lysine products. Direct measures of lysine bioavailability from lipid-coated lysine products after mixing with diets should be based on measurements with the products treated similarly to the method of feeding. |
---|