Cargando…
Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials
[Image: see text] Most contaminants of emerging concern are polar and/or ionizable organic compounds, whose removal from engineered and environmental systems is difficult. Carbonaceous sorbents include activated carbon, biochar, fullerenes, and carbon nanotubes, with applications such as drinking wa...
Autores principales: | Sigmund, Gabriel, Gharasoo, Mehdi, Hüffer, Thorsten, Hofmann, Thilo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205386/ https://www.ncbi.nlm.nih.gov/pubmed/32124609 http://dx.doi.org/10.1021/acs.est.9b06287 |
Ejemplares similares
-
Comment
on Predicting Aqueous Adsorption of Organic
Compounds onto Biochars, Carbon Nanotubes, Granular Activated Carbons,
And Resins with Machine Learning
por: Sigmund, Gabriel, et al.
Publicado: (2020) -
Data on sorption of organic compounds by aged polystyrene microplastic particles
por: Hüffer, Thorsten, et al.
Publicado: (2018) -
Sorption to soil, biochar and compost: is prediction to multicomponent mixtures possible based on single sorbent measurements?
por: Kah, Melanie, et al.
Publicado: (2018) -
Detection of Carbonaceous Material in Naga Bhasma
por: Singh, S. K., et al.
Publicado: (2012) -
Effect of pH-Dependent Homo/Heteronuclear CAHB on Adsorption and Desorption Behaviors of Ionizable Organic Compounds on Carbonaceous Materials
por: Li, Xiaoyun, et al.
Publicado: (2022)