Cargando…
SwiftReg cluster registration automatically reduces flow cytometry data variability including batch effects
Biological differences of interest in large, high-dimensional flow cytometry datasets are often obscured by undesired variations caused by differences in cytometers, reagents, or operators. Each variation type requires a different correction strategy, and their unknown contributions to overall varia...
Autores principales: | Rebhahn, Jonathan A., Quataert, Sally A., Sharma, Gaurav, Mosmann, Tim R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205614/ https://www.ncbi.nlm.nih.gov/pubmed/32382076 http://dx.doi.org/10.1038/s42003-020-0938-9 |
Ejemplares similares
-
Competitive SWIFT cluster templates enhance detection of aging changes
por: Rebhahn, Jonathan A., et al.
Publicado: (2015) -
SWIFT—Scalable Clustering for Automated Identification of Rare Cell Populations in Large, High-Dimensional Flow Cytometry Datasets, Part 1: Algorithm Design
por: Naim, Iftekhar, et al.
Publicado: (2014) -
SWIFT—Scalable Clustering for Automated Identification of Rare Cell Populations in Large, High-Dimensional Flow Cytometry Datasets, Part 2: Biological Evaluation
por: Mosmann, Tim R, et al.
Publicado: (2014) -
An animated landscape representation of CD4(+) T-cell differentiation, variability, and plasticity: Insights into the behavior of populations versus cells
por: Rebhahn, Jonathan A, et al.
Publicado: (2014) -
Minimizing Batch Effects in Mass Cytometry Data
por: Schuyler, Ronald P., et al.
Publicado: (2019)