Cargando…
Modeling Users’ Multifaceted Interest Correlation for Social Recommendation
Recommender systems suggest to users the items that are potentially of their interests, by mining users’ feedback data on items. Social relations provide an independent source of information about users and can be exploited for improving recommendation performance. Most of existing recommendation me...
Autores principales: | Wang, Hao, Shen, Huawei, Cheng, Xueqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206155/ http://dx.doi.org/10.1007/978-3-030-47426-3_10 |
Ejemplares similares
-
Modeling POI-Specific Spatial-Temporal Context for Point-of-Interest Recommendation
por: Wang, Hao, et al.
Publicado: (2020) -
User Identity Linkage across Social Networks with the Enhancement of Knowledge Graph and Time Decay Function
por: Gao, Hao, et al.
Publicado: (2022) -
Collaborative Filtering Recommendation on Users’ Interest Sequences
por: Cheng, Weijie, et al.
Publicado: (2016) -
PDPNN: Modeling User Personal Dynamic Preference for Next Point-of-Interest Recommendation
por: Zhong, Jinwen, et al.
Publicado: (2020) -
POI recommendation with queuing time and user interest awareness
por: Halder, Sajal, et al.
Publicado: (2022)