Cargando…
Relational Metric Learning with Dual Graph Attention Networks for Social Recommendation
Existing social recommenders typically incorporate all social relations into user preference modeling, while social connections are not always built on common interests. In addition, they often learn a single vector for each user involved in two domains, which is insufficient to reveal user’s comple...
Autores principales: | Wang, Xiaodong, Liu, Zhen, Wang, Nana, Fan, Wentao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206156/ http://dx.doi.org/10.1007/978-3-030-47426-3_9 |
Ejemplares similares
-
Recipe Recommendation With Hierarchical Graph Attention Network
por: Tian, Yijun, et al.
Publicado: (2022) -
Personal Interest Attention Graph Neural Networks for Session-Based Recommendation
por: Zhang, Xiangde, et al.
Publicado: (2021) -
Meta-path guided graph attention network for explainable herb recommendation
por: Jin, Yuanyuan, et al.
Publicado: (2023) -
Graph neural networks for preference social recommendation
por: Ma, Gang-Feng, et al.
Publicado: (2023) -
Exploiting Dual-Attention Networks for Explainable Recommendation in Heterogeneous Information Networks
por: Zuo, Xianglin, et al.
Publicado: (2022)