Cargando…

FlowRec: Prototyping Session-Based Recommender Systems in Streaming Mode

Despite the increasing interest towards session-based and streaming recommender systems, there is still a lack of publicly available evaluation frameworks supporting both these paradigms. To address the gap, we propose FlowRec — an extension of the streaming framework Scikit-Multiflow, which opens p...

Descripción completa

Detalles Bibliográficos
Autores principales: Paraschakis, Dimitris, Nilsson, Bengt J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206159/
http://dx.doi.org/10.1007/978-3-030-47426-3_6
Descripción
Sumario:Despite the increasing interest towards session-based and streaming recommender systems, there is still a lack of publicly available evaluation frameworks supporting both these paradigms. To address the gap, we propose FlowRec — an extension of the streaming framework Scikit-Multiflow, which opens plentiful possibilities for prototyping recommender systems operating on sessionized data streams, thanks to the underlying collection of incremental learners and support for real-time performance tracking. We describe the extended functionalities of the adapted prequential evaluation protocol, and develop a competitive recommendation algorithm on top of Scikit-Multiflow’s implementation of a Hoeffding Tree. We compare our algorithm to other known baselines for the next-item prediction task across three different domains.