Cargando…
SLGAT: Soft Labels Guided Graph Attention Networks
Graph convolutional neural networks have been widely studied for semi-supervised classification on graph-structured data in recent years. They usually learn node representations by transforming, propagating, aggregating node features and minimizing the prediction loss on labeled nodes. However, the...
Autores principales: | Wang, Yubin, Zhang, Zhenyu, Liu, Tingwen, Guo, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206162/ http://dx.doi.org/10.1007/978-3-030-47426-3_40 |
Ejemplares similares
-
Role Equivalence Attention for Label Propagation in Graph Neural Networks
por: Park, Hogun, et al.
Publicado: (2020) -
An Attention-Guided Spatiotemporal Graph Convolutional Network for Sleep Stage Classification
por: Li, Menglei, et al.
Publicado: (2022) -
Attention-Based Graph Neural Network for Label Propagation in Single-Cell Omics
por: Bhadani, Rahul, et al.
Publicado: (2023) -
Meta-path guided graph attention network for explainable herb recommendation
por: Jin, Yuanyuan, et al.
Publicado: (2023) -
Gated Graph Attention Network for Cancer Prediction
por: Qiu, Linling, et al.
Publicado: (2021)