Cargando…
Multi-level Memory Network with CRFs for Keyphrase Extraction
Keyphrase, that concisely describe the high-level topics discussed in a document, are very useful for a wide range of natural language processing (NLP) tasks. Current popular supervised methods for keyphrase extraction commonly cannot effectively utilize the long-range contextual information in text...
Autores principales: | Zhou, Tao, Zhang, Yuxiang, Zhu, Haoxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206171/ http://dx.doi.org/10.1007/978-3-030-47426-3_56 |
Ejemplares similares
-
DAKE: Document-Level Attention for Keyphrase Extraction
por: Santosh, Tokala Yaswanth Sri Sai, et al.
Publicado: (2020) -
Keyphrase Extraction as Sequence Labeling Using Contextualized Embeddings
por: Sahrawat, Dhruva, et al.
Publicado: (2020) -
Deep neural model with self-training for scientific keyphrase extraction
por: Zhu, Xun, et al.
Publicado: (2020) -
A Graph-Based Keyphrase Extraction Model with Three-Way Decision
por: Chen, Tianlei, et al.
Publicado: (2020) -
CRFs based de-identification of medical records
por: He, Bin, et al.
Publicado: (2015)