Cargando…
Inter-sentence and Implicit Causality Extraction from Chinese Corpus
Automatically extracting causal relations from texts is a challenging task in Natural Language Processing (NLP). Most existing methods focus on extracting intra-sentence or explicit causality, while neglecting the causal relations that expressed implicitly or hidden in inter-sentences. In this paper...
Autores principales: | Jin, Xianxian, Wang, Xinzhi, Luo, Xiangfeng, Huang, Subin, Gu, Shengwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206172/ http://dx.doi.org/10.1007/978-3-030-47426-3_57 |
Ejemplares similares
-
Exploiting document graphs for inter sentence relation extraction
por: Le, Hoang-Quynh, et al.
Publicado: (2022) -
Interference between Sentence Processing and Probabilistic Implicit Sequence Learning
por: Nemeth, Dezso, et al.
Publicado: (2011) -
Explicit (Not Implicit) Attitudes Mediate the Focus of Attention During Sentence Processing
por: Horchak, Oleksandr V., et al.
Publicado: (2020) -
Assessment of disease named entity recognition on a corpus of annotated sentences
por: Jimeno, Antonio, et al.
Publicado: (2008) -
Implicit consequentiality bias in English: A corpus of 300+ verbs
por: Garnham, Alan, et al.
Publicado: (2020)