Cargando…
Prototype Similarity Learning for Activity Recognition
Human Activity Recognition (HAR) plays an irreplaceable role in various applications such as security, gaming, and assisted living. Recent studies introduce deep learning to mitigate the manual feature extraction (i.e., data representation) efforts and achieve high accuracy. However, there are still...
Autores principales: | Bai, Lei, Yao, Lina, Wang, Xianzhi, Kanhere, Salil S., Xiao, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206173/ http://dx.doi.org/10.1007/978-3-030-47426-3_50 |
Ejemplares similares
-
Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes
por: Kanhere, Aditi, et al.
Publicado: (2005) -
Lifelong Adaptive Machine Learning for Sensor-Based Human Activity Recognition Using Prototypical Networks
por: Adaimi, Rebecca, et al.
Publicado: (2022) -
Blockchain for cyberphysical systems
por: Dorri, Ali, et al.
Publicado: (2020) -
Privacy in targeted advertising on mobile devices: a survey
por: Ullah, Imdad, et al.
Publicado: (2022) -
40th Annual IEEE Conference on Local Computer Networks 2015
por: Kanhere, Salil, et al.
Publicado: (2015)