Cargando…
Cross-data Automatic Feature Engineering via Meta-learning and Reinforcement Learning
Feature Engineering (FE) is one of the most beneficial, yet most difficult and time-consuming tasks of machine learning projects, and requires strong expert knowledge. It is thus significant to design generalized ways to perform FE. The primary difficulties arise from the multiform information to co...
Autores principales: | Zhang, Jianyu, Hao, Jianye, Fogelman-Soulié, Françoise |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206177/ http://dx.doi.org/10.1007/978-3-030-47426-3_63 |
Ejemplares similares
-
Automatic Assistance to Cognitive Disabled Web Users via Reinforcement Learning on the Browser
por: Murillo-Morales, Tomas, et al.
Publicado: (2020) -
Meta-reinforcement learning via orbitofrontal cortex
por: Hattori, Ryoma, et al.
Publicado: (2023) -
Improving the Efficiency and Effectiveness of Community Detection via Prior-Induced Equivalent Super-Network
por: Yang, Liang, et al.
Publicado: (2017) -
Reinforcement Learning-Based End-to-End Parking for Automatic Parking System
por: Zhang, Peizhi, et al.
Publicado: (2019) -
Feature engineering for machine learning and data analytics
por: Dong, Guozhu, et al.
Publicado: (2018)