Cargando…
Human Activity Recognition Using Semi-supervised Multi-modal DEC for Instagram Data
Human Activity Recognition (HAR) using social media provides a solid basis for a variety of context-aware applications. Existing HAR approaches have adopted supervised machine learning algorithms using texts and their meta-data such as time, venue, and keywords. However, their recognition accuracy m...
Autores principales: | Kim, Dongmin, Han, Sumin, Son, Heesuk, Lee, Dongman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206193/ http://dx.doi.org/10.1007/978-3-030-47426-3_67 |
Ejemplares similares
-
Semi-Supervised Adversarial Auto-Encoder to Expedite Human Activity Recognition
por: Thapa, Keshav, et al.
Publicado: (2023) -
X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data
por: Hong, Danfeng, et al.
Publicado: (2020) -
Semi-Supervised Cross-Subject Emotion Recognition Based on Stacked Denoising Autoencoder Architecture Using a Fusion of Multi-Modal Physiological Signals
por: Luo, Junhai, et al.
Publicado: (2022) -
Study on Human Activity Recognition Using Semi-Supervised Active Transfer Learning
por: Oh, Seungmin, et al.
Publicado: (2021) -
Semi-Supervised Adversarial Learning Using LSTM for Human Activity Recognition
por: Yang, Sung-Hyun, et al.
Publicado: (2022)