Cargando…
Exploiting the Matching Information in the Support Set for Few Shot Event Classification
The existing event classification (EC) work primarily focuses on the traditional supervised learning setting in which models are unable to extract event mentions of new/unseen event types. Few-shot learning has not been investigated in this area although it enables EC models to extend their operatio...
Autores principales: | Lai, Viet Dac, Dernoncourt, Franck, Nguyen, Thien Huu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206230/ http://dx.doi.org/10.1007/978-3-030-47436-2_18 |
Ejemplares similares
-
Few-Shot Text Classification with Global–Local Feature Information
por: Wang, Depei, et al.
Publicado: (2022) -
Feature augmentation based on information fusion rectification for few-shot image classification
por: Wang, Hang, et al.
Publicado: (2023) -
Hybrid Fine-Tuning Strategy for Few-Shot Classification
por: Zhao, Lei, et al.
Publicado: (2022) -
Bidirectional matching and aggregation network for few-shot relation extraction
por: Wei, Zhongcheng, et al.
Publicado: (2023) -
Efficient few-shot machine learning for classification of EBSD patterns
por: Kaufmann, Kevin, et al.
Publicado: (2021)