Cargando…
Semi-supervised Learning Approach to Generate Neuroimaging Modalities with Adversarial Training
Magnetic Resonance Imaging (MRI) of the brain can come in the form of different modalities such as T1-weighted and Fluid Attenuated Inversion Recovery (FLAIR) which has been used to investigate a wide range of neurological disorders. Current state-of-the-art models for brain tissue segmentation and...
Autores principales: | Nguyen, Harrison, Luo, Simon, Ramos, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206232/ http://dx.doi.org/10.1007/978-3-030-47436-2_31 |
Ejemplares similares
-
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022) -
Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition
por: Gao, Fei, et al.
Publicado: (2018) -
Quantum semi-supervised generative adversarial network for enhanced data classification
por: Nakaji, Kouhei, et al.
Publicado: (2021) -
Semi-supervised generative and discriminative adversarial learning for motor imagery-based brain–computer interface
por: Ko, Wonjun, et al.
Publicado: (2022)