Cargando…
Towards Understanding Transfer Learning Algorithms Using Meta Transfer Features
Transfer learning, which aims to reuse knowledge in different domains, has achieved great success in many scenarios via minimizing domain discrepancy and enhancing feature discriminability. However, there are seldom practical determination methods for measuring the transferability among domains. In...
Autores principales: | Li, Xin-Chun, Zhan, De-Chuan, Yang, Jia-Qi, Shi, Yi, Hang, Cheng, Lu, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206234/ http://dx.doi.org/10.1007/978-3-030-47436-2_64 |
Ejemplares similares
-
Comparison of deep transfer learning algorithms and transferability measures for wearable sleep staging
por: Waters, Samuel H., et al.
Publicado: (2022) -
Feature learning and understanding: algorithms and applications
por: Zhao, Haitao, et al.
Publicado: (2020) -
Cross-Domain Transfer Learning for PCG Diagnosis Algorithm
por: Tseng, Kuo-Kun, et al.
Publicado: (2021) -
A Vehicle Recognition Algorithm Based on Deep Transfer Learning with a Multiple Feature Subspace Distribution
por: Wang, Hai, et al.
Publicado: (2018) -
Application of Transfer Learning and Feature Fusion Algorithms to Improve the Identification and Prediction Efficiency of Premature Ovarian Failure
por: Zhang, Yuanyuan, et al.
Publicado: (2022)