Cargando…
Attention-Based Aggregation Graph Networks for Knowledge Graph Information Transfer
Knowledge graph completion (KGC) aims to predict missing information in a knowledge graph. Many existing embedding-based KGC models solve the Out-of-knowledge-graph (OOKG) entity problem (also known as zero-shot entity problem) by utilizing textual information resources such as descriptions and type...
Autores principales: | Zhao, Ming, Jia, Weijia, Huang, Yusheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206237/ http://dx.doi.org/10.1007/978-3-030-47436-2_41 |
Ejemplares similares
-
Discovering latent node Information by graph attention network
por: Gu, Weiwei, et al.
Publicado: (2021) -
Graph Attention Interaction Aggregation Network for Click-Through Rate Prediction
por: Zhang, Wei, et al.
Publicado: (2022) -
Attention-Based Graph Evolution
por: Fan, Shuangfei, et al.
Publicado: (2020) -
GFCNet: Utilizing graph feature collection networks for coronavirus knowledge graph embeddings
por: Xie, Zhiwen, et al.
Publicado: (2022) -
Predicting Protein–Protein Interactions via Gated Graph Attention Signed Network
por: Xiang, Zhijie, et al.
Publicado: (2021)