Cargando…
EMOVA: A Semi-supervised End-to-End Moving-Window Attentive Framework for Aspect Mining
Aspect mining or extraction is one of the most challenging problems in aspect-level analysis on customer reviews; it aims to extract terms from a review describing aspects of a reviewed entity, e.g., a product or service. As aspect mining can be formulated as the sequence labeling problem, supervise...
Autores principales: | Li, Ning, Chow, Chi-Yin, Zhang, Jia-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206239/ http://dx.doi.org/10.1007/978-3-030-47436-2_61 |
Ejemplares similares
-
End-to-end Jordanian dialect speech-to-text self-supervised learning framework
por: Safieh, Ali A., et al.
Publicado: (2022) -
Development and validation of a new method for visual acuity assesment on tablet in pediatric population: eMOVA test
por: Stoll, Noémie, et al.
Publicado: (2022) -
Weakly supervised end-to-end artificial intelligence in gastrointestinal endoscopy
por: Buendgens, Lukas, et al.
Publicado: (2022) -
Twitter mining using semi-supervised classification for relevance filtering in syndromic surveillance
por: Edo-Osagie, Oduwa, et al.
Publicado: (2019) -
An efficient semi-supervised community detection framework in social networks
por: Li, Zhen, et al.
Publicado: (2017)