Cargando…
TCN-ATT: A Non-recurrent Model for Sequence-Based Malware Detection
Malware detection based on API call sequences is widely used for the ability to model program behaviours. But RNN-based models for this task usually have bottlenecks in efficiency and accuracy due to their recurrent structure. In this paper, we propose a Temporal Convolutional Network with ATTention...
Autores principales: | Huang, Junyao, Lu, Chenhui, Ping, Guolou, Sun, Lin, Ye, Xiaojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206248/ http://dx.doi.org/10.1007/978-3-030-47436-2_14 |
Ejemplares similares
-
MGP-AttTCN: An interpretable machine learning model for the prediction of sepsis
por: Rosnati, Margherita, et al.
Publicado: (2021) -
Malware detection
por: Nandal, Priyanka
Publicado: (2017) -
Malware Analysis and Detection Engineering: A Comprehensive Approach to Detect and Analyze Modern Malware
por: Mohanta, Abhijit, et al.
Publicado: (2020) -
Malware detection in Android phones
por: Malik, Sapna
Publicado: (2017) -
Detecting Malware with Information Complexity
por: Alshahwan, Nadia, et al.
Publicado: (2020)