Cargando…
MSGE: A Multi-step Gated Model for Knowledge Graph Completion
Knowledge graph embedding models aim to represent entities and relations in continuous low-dimensional vector space, benefiting many research areas such as knowledge graph completion and web searching. However, previous works do not consider controlling information flow, which makes them hard to obt...
Autores principales: | Tan, Chunyang, Yang, Kaijia, Dai, Xinyu, Huang, Shujian, Chen, Jiajun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206261/ http://dx.doi.org/10.1007/978-3-030-47426-3_33 |
Ejemplares similares
-
Incremental Multi-source Entity Resolution for Knowledge Graph Completion
por: Saeedi, Alieh, et al.
Publicado: (2020) -
A type-augmented knowledge graph embedding framework for knowledge graph completion
por: He, Peng, et al.
Publicado: (2023) -
Multi-Task Learning and Improved TextRank for Knowledge Graph Completion
por: Tian, Hao, et al.
Publicado: (2022) -
Hyperbolic Knowledge Graph Embeddings for Knowledge Base Completion
por: Kolyvakis, Prodromos, et al.
Publicado: (2020) -
A Novel Encoder-Decoder Knowledge Graph Completion Model for Robot Brain
por: Song, Yichen, et al.
Publicado: (2021)