Cargando…
Self-supervised Learning for Semi-supervised Time Series Classification
Self-supervised learning is a promising new technique for learning representative features in the absence of manual annotations. It is particularly efficient in cases where labeling the training data is expensive and tedious, naturally linking it to the semi-supervised learning paradigm. In this wor...
Autores principales: | Jawed, Shayan, Grabocka, Josif, Schmidt-Thieme, Lars |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206263/ http://dx.doi.org/10.1007/978-3-030-47426-3_39 |
Ejemplares similares
-
Time-Series Laplacian Semi-Supervised Learning for Indoor Localization †
por: Yoo, Jaehyun
Publicado: (2019) -
Semi-supervised learning /
Publicado: (2010) -
A review of semi-supervised learning for text classification
por: Duarte, José Marcio, et al.
Publicado: (2023) -
Active semi-supervised learning for biological data classification
por: Camargo, Guilherme, et al.
Publicado: (2020) -
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020)