Cargando…

Detecting Arbitrarily Oriented Subspace Clusters in Data Streams Using Hough Transform

When facing high-dimensional data streams, clustering algorithms quickly reach the boundaries of their usefulness as most of these methods are not designed to deal with the curse of dimensionality. Due to inherent sparsity in high-dimensional data, distances between objects tend to become meaningles...

Descripción completa

Detalles Bibliográficos
Autores principales: Borutta, Felix, Kazempour, Daniyal, Mathy, Felix, Kröger, Peer, Seidl, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206268/
http://dx.doi.org/10.1007/978-3-030-47426-3_28

Ejemplares similares