Cargando…
Detecting Arbitrarily Oriented Subspace Clusters in Data Streams Using Hough Transform
When facing high-dimensional data streams, clustering algorithms quickly reach the boundaries of their usefulness as most of these methods are not designed to deal with the curse of dimensionality. Due to inherent sparsity in high-dimensional data, distances between objects tend to become meaningles...
Autores principales: | Borutta, Felix, Kazempour, Daniyal, Mathy, Felix, Kröger, Peer, Seidl, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206268/ http://dx.doi.org/10.1007/978-3-030-47426-3_28 |
Ejemplares similares
-
Metafiber transforming arbitrarily structured light
por: Li, Chenhao, et al.
Publicado: (2023) -
Quantification and Characterization of CTCs and Clusters in Pancreatic Cancer by Means of the Hough Transform Algorithm
por: Calero-Castro, Francisco José, et al.
Publicado: (2023) -
Parallel Hough transform for track detection in LHCb's VELO Pixel detector
por: Ebert, Matthias
Publicado: (2014) -
Fast Hough Transform Track Reconstruction for the ALICE TPC
por: Cheshkov, C, et al.
Publicado: (2005) -
Track Finding for the PANDA Detector Based on Hough Transformations
por: Alicke, Anna
Publicado: (2021)