Cargando…
Spectral Clustering by Subspace Randomization and Graph Fusion for High-Dimensional Data
Subspace clustering has been gaining increasing attention in recent years due to its promising ability in dealing with high-dimensional data. However, most of the existing subspace clustering methods tend to only exploit the subspace information to construct a single affinity graph (typically for sp...
Autores principales: | Cai, Xiaosha, Huang, Dong, Wang, Chang-Dong, Kwoh, Chee-Keong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206270/ http://dx.doi.org/10.1007/978-3-030-47426-3_26 |
Ejemplares similares
-
Adaptive Weighted Graph Fusion Incomplete Multi-View Subspace Clustering
por: Zhang, Pei, et al.
Publicado: (2020) -
Dimensionality Reduction and Subspace Clustering in Mixed Reality for Condition Monitoring of High-Dimensional Production Data †
por: Hoppenstedt, Burkhard, et al.
Publicado: (2019) -
Resource-efficient high-dimensional subspace teleportation with a quantum autoencoder
por: Zhang, Hui, et al.
Publicado: (2022) -
Ensemble Linear Subspace Analysis of High-Dimensional Data
por: Ahmed, S. Ejaz, et al.
Publicado: (2021) -
Multilinear subspace learning
:
dimensionality reduction of multidimensional data
por: Lu, Haiping, et al.
Publicado: (2014)